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The Data Whisperer

Goal: Generalizations
A model or summarization of the data.

Hypotheses!
Potential findings -- to be tected
for happenctance.

-

WHAT
DOES THE
DATA
TELL US
TO DO?

WE ONLY

HAVE BAD

DATA ON
THIS.
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DOES THE BAD DATA
SUGGEST WE SHOULD DO
WHAT WE WANTED TO
DO ANYWAY?

WELL,

/ YES.

3-18  QWNLE Scott Mass, Inc./3ist. by Aadrews NcMeel

THATS CALLED
"GOOD DATA.”
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Also known as... “Don’t be Dilbert’'s Boss!”
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H,: null hypothesis -- some “default” value; “null”: nothing changes

H_: the alternative -- the opposite of the null => a change or difference
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Hypothesis Testing

H,: null hypothesis

H_: the alternative -- the opposite of the null => a change or difference

Given null, what is the probability of the observation or worse?

-> If low enough, then we “reject the null (H,) in favor of H_.”

H : The blue case is not celling more than average.



The Hypothesis Test “Algorithm”

observatione (i.e. data) B level of significance
Input: H,, obs, a

Output: decision

H : The blue case is not celling more than average.




The Hypothesis Test “Algorithm”

observatione (i.e. data) B level of significance
Input: H,, obs, a

probability of what we observed or worse (i.e. more extreme)

p(x>=obs | H)) < a

Output: decision

H : The blue case is not celling more than average.




The Hypothesis Test “Algorithm”

Input: H,, obs, a

if p(x>=obs | H)) < a:
decision = “Reject H,!”
else:
decision = “Accept H,.”
Output: decision

H : The blue case is not celling more than average.
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The Hypothesis Test “Algorithm”

Input: H,, obs, a

‘ l MNeed to ectimate What is the distribution of values we
would expect if the null was true?
X -- the “null distribution”
if p(x>=obs | H)) < a:
decision = “Reject H@V’
else:

decision = “Accept H,.”
Output: decision

H : The blue case is not celling more than average.




Probability Distributions: Review

X: A mapping from Q to R that describes the question we care about in practice.

X is a continuous random variable if it X is a discrete random variable

can take on an infinite number of if it takes only a countable
values between any two given values. number of values.
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Continuous Distributions

X is a continuous random variable if it
can take on an infinite number of
values between any two given values.

X is a continuous random variable if there exists a function fx such that:

fx(x) >0, for all x € X,

/_ fx(x)dr =1, and

b
Pla <X <b) = / fx(x)dz
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Continuous Distributions

X is a continuous random variable if it
can take on an infinite number of
values between any two given values.

X is a continuous random variable if there exists a function fx such that:

fx(x) >0, for all x € X,

/_ fx(x)dr =1, and

b
Pla <X <b) = / fx(x)dz

Jx : “probability density function” (pdf) 27



Continuous Distributions

Discretize them!
(group into discrete bins)

How to model?




Continuous Distributions

P(bin=8) =.32
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Continuous Distributions
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Continuous Distributions

Common Trap

e fx(x) doesnotyield a probability
b
. / fy(z)dz does
o « may be anything ([R)

« thus, fx(z) maybe>1

32



Continuous Distributions

Common pdfs: Normal(0, 1)
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Normal PDF . within 2 - o =~ 95%

D within 3 - o =~ 99%
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Credit: MIT Open Courseware: Probability and Statistics 33



Continuous Distributions

Common pdfs: Normal(0, 1) (“standard normal”)

How to “standardize” any normal distribution:

1. subtract the mean, u (aka “mean centering”)
2. divide by the standard deviation, o

z=(x-u) /o, (aka “zscore”)

Credit: MIT Open Courseware: Probability and Statistics 34



Probability Distributions: Review

X: A mapping from Q to R that describes the question we care about in practice.
v
‘Cample space’] cet of all pocsible outcomes.

X is a continuous random variable if it X is a discrete random variable

can take on an infinite number of if it takes only a countable
values between any two given values. number of values.
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Discrete Random Variables

For a given discrete random variable X,
probability mass function (pmf),
fx: & — [0, 1], is defined by:
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Discrete Random Variables

For a given random variable X, the
cumulative distribution function (CDF),
Fx: & — [0, 1], is defined by:

Fx(z) = P(X < )

X is a discrete random variable

if it takes only a countable
number of values.
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Discrete Random Variables

For a given random variable X, the
cumulative distribution function (CDF),
Fx: ® — [0, 1], is defined by:
Fx(z) =P(X < x) Normal
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Discrete Random Variables

For a given random variable X, the
cumulative distribution function (CDF),
Fx: ® — [0, 1], is defined by:

Fx(z) =P(X < x) Normal
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21 " Binomial (n, p)
For a given random variable X, the
cumulative distribution function (CDF), Rl I ;
Fx: & — [0, 1], is defined by: H1esnatudetonet oucls
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X is a discrete random variable
if it takes only a countable
number of values.

For a given discrete random variable X,
probability mass function (pmf),
fx: & — [0, 1], is defined by:

fx(x) =P(X =)




The Hypothesis Test “Algorithm”

Input: H,, observations, a

‘ l MNeed to ectimate What is the distribution of values we
would expect if the null was true?
X -- the “null distribution”
if p(x>=obs | H)) < a:
decision = “Reject H@V’
else:

decision = “Accept H,.”
Output: decision

H : The blue case is not celling more than average.




The Hypothesis Test “Algorithm”

Binomial (N=50, p = 0.5)
PMF

What is the distribution of values we
would expect if the null was true?
-- the “null distribution”

25
H : The blue case is not celling more than average.

50 cales; 2 colore (blue and red); Thus, average would be 25 blue cales
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p(x >= 33; Binomial(50, 0.5)) = 0.016
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The Hypothesis Test “Algorithm”

Input: H,, obs, a
null_dist = distribution of expected values under H,
p(x>=obs | H,) = sum(pmf(null_dist, o) for o in range(obs,))

if p(x>=obs | H)) < a:
decision = “Reject H,!”
else:
decision = “Accept H,.”
Output: decision

H: The blue case is not celling more than average. Observed 33 blue sales

50 cales; 2 colore (blue and red); Thus, average would be 25 blue cales



The Hypothesis Test “Algorithm”

Input: H,, obs, a
null_dist = distribution of expected values under H,

p(x>=obs | H)) = 1 - cdf(null_dist, obs-1)

if p(x>=obs | H)) < a:
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else:
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Input: H,, obs, a

null_dist = distribution of expected values under H,

p(x>=obs | H)) = 1 - cdf(null_dist, obs-) = 0.016
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The Hypothesis Test “Algorithm”

p(x >= 28; Binomial(50, 0.5)) = 0.239
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The Hypothesis Test “Algorithm”

Input: H,, obs, a
null_dist = distribution of expected values under H,
p(x<=obs | H)) = cdf(null_dist, obs)

if p(x<=obs | H)) < a:
decision = “Reject H,!”
else:
decision = “Accept H,.”
Output: decision

H : The blue case is not celling less than average. Observed 32 blue cales

50 cales; 2 colore (blue and red); Thus, average would be 25 blue cales
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The Hypothesis Test “Algorithm”

Input: H,, obs, a

null dist = distribution of expected under H,
JORE | H,) = cdf(null_dist,
if p(x<= | H) < a:
decision = “Reject H,!”
else:
decision = “Accept H,.”

Output: decision

H : The blue case is not celling less than average. Observed 36 blue cales

50 cales; 2 colore (blue and red); Thus, average would be 25 blue cales
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Hypothesis Testing

P(D[H,): Given null, what is the probability of the observed data or worse?

-> If low enough, then we “reject the null (H ) in favor of H_.”
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A p-value (shaded green area) is the probability of an observed
(or more extreme) result assuming that the null hypothesis is true.
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Hypothesis Testing

P(D[H,): Given null, what is the probability of the observed data or worse?

-> If low enough, then we “reject the null (H ) in favor of H_.”

More likely observation

V

1
A P-value

Very un-likely

Very un-likely
observations

observations

Observed

data poi nt\
© >

Set of possible results

Probability density

A p-value (shaded green area) is the probability of an observed o _
(or more extreme) result assuming that the null hypothesis is true. (thanks, Wikipedia)


https://en.wikipedia.org/wiki/P-value

The Hypothesis Test “Algorithm”

Input: H,, obs, a

null dist = distribution of expected under H,
JORE | H,) = cdf(null_dist,
if p(x<= | H) < a:
decision = “Reject H,!”
else:
decision = “Accept H,.”

Output: decision

H : The blue case is not celling less than average. Observed 36 blue cales

50 cales; 2 colore (blue and red); Thus, average would be 25 blue cales
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Why?
A general framework for answering (yes/no) questions!

® Are height and baldnese related?

® ¢ my deep predictive model better than the ctate of the art?

® Jc the heat index of a community related to poverty?

® Jc the heat index of a community related to poverty controlling for edvcation rates?

® Doec my website receive a higher average number of monthly visitors?



Hypothesis TestifiZZatazpzyaes

the null ic true.

Why?

A general framework for answering (yes/maybe) questions!

Are height and baldnese related?

Ic my deep predictive model better than the ctate of the art?

Ic the heat index of a community related to poverty?

Ic the heat index of a community related to poverty controlling for edvcation rates?

Doe¢ my website receive a higher average number of monthly vicitors?



Hypothesis Testirfaiitcdiisssisimn

the wull ic true. However, if the cample is

large enough, it may be enovgh to cay that
the effect size (correlation, difference valve,

Why 7 ete...) ic not very meam‘ugf'u/.

A general framework for answering (yes/maybe) questions!

Are height and baldnese related?

Ic my deep predictive model better than the ctate of the art?

Ic the heat index of a community related to poverty?

Ic the heat index of a community related to poverty controlling for edvcation rates?

Doe¢ my website receive a higher average number of monthly vicitors?
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Bonferroni’s Cats

General Question: Which fish do cats like?

N = 50 cats
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/7’7: Moct cats like redfich. HO: Moct cats don't like redfich.
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Bonferroni’s Cats

General Question: Which fish do cats like?

N = 50 cats; 32 like redfish; p = 0.016
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/7’ Moct cats like redfich. H Moct cats don't like redfich.
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General Question: Which fish do cats like?

N = 50 cats; 32 like redfish; p = 0.016

Now suppose instead of just redfish, you
wanted to ask the same question for 10

kinds of fish: /7’ Moct cats like redfich;

H Moct catr /uée bluefich; /-/ Moct
cm.‘c like orangefich; ... with a = O 05, can




Bonferroni’s Cats

General Question: Which fish do cats like?

N = 50 cats; 32 like redfish; p = 0.016

Now suppose instead of just redfish, you
wanted to ask the same question for 10

kinds of fish: H Moct cats like redfich;

H - Moct catr /uée bluefich; H - Moct

catc like orangefich; ... with a = O 05, can
you still conclude most cats like redfish?
int: P(1 c:y] 1-Plno r:y} e (4= G 05};0 = 0.90

H Moct ca
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General Question: Which fish do cats like?

N = 50 cats; 32 like redfish; p = 0.016

|/ o =0.05-- probability threshold for happening upon the
result even if it really doesn't exist.
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|/ o =0.05-- probability threshold for happening upon the
result even if it really doesn't exist.

1 - p(not happening upon the result) =1 - (1 - .05)*
=1-0.599=4
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Bonferroni’s Cats

General Question: Which fish do cats like?

N = 50 cats; 32 like redfish; p = 0.016

|/ o =0.05-- probability threshold for happening upon the
result even if it really doesn't exist.

N
Is there a way we could adjust |PON once in ten times?

alpha to keep it low enough? |=1-(1-.05)%*
=1-0.599=14




Bonferroni’s Cats

General Question: Which fish do cats like?

N = 50 cats; 32 like redfish; p = 0.016
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Is there a way we could adjust  f happening upon the

alpha to keep it low enough?
\  The Bonferroni correction: pon once in ten times?

Oyons = O/ 1R =1-(1-.05)%
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]K \(J = 1-0.599=4 |
How to fix? 1- (1 - adju3t(.05))" < 05 .

H7: Moct ca don T ke redfich.




Bonferroni’s Cats

General Question: Which fish do cats like?

N = 50 cats; 32 like redfish; p = 0.016

- ] ] - !

Nt o) ~

},\,Qu —— bITP
£

N~ \

Is there a way we could adjust  f happening upon the

alpha to keep it low enough?

\  The Bonferroni correction: pon once in ten times?

]K qbonf=q/|h| =1-(1-.05)Y
\/_/ = 1-0.599

How to fix? 1 - (1 - (.05/10))° = 0488

H7: Moct ca don T ke redfich.




Multi-test Correction

Type |, Type Il Errors

True state of nature
Hy i
Our Reject Hy Type I error | correct decision

decision ‘Accept’ Hy | correct decision | Type II error
(Orloff & Bloom, 2014)




Multi-test Correction

significance level ("p-value”) = P(type | error) = P(Reject H | H,)
(probability we are incorrect)

| Hy | Ha
Reject Hy  P(Reject H, | H,)

True state of nature
Hy i
Our Reject Hy Type I error | correct decision

decision ‘Accept’ Hy | correct decision | Type II error
(Orloff & Bloom, 2014)




Multi-test Correction

significance level ("p-value”) = P(type | error) = P(Reject H | H)
(probability we are incorrect)

power =1 - P(type Il error) = P(Reject H | H,)
(probability we are correct)

| Hy | Ha
Reject Hy  P(Reject H,| H,) P(Reject H, | H

a)

True state of nature
Hy Hap

Our Reject Hy Type I error | correct decision

decision ‘Accept’ Hy | correct decision | Type II error

(Orloff & Bloom, 2014)



Multi-test Correction

FWER: Family-wise error rate (Bonferroni Corrects)
The probability of making >=1 type 1 error.
FWER = Pr(typels>0) = I - Pr(typels=0)=1-(1-a)"

True state of nature
Hy Hx
Our Reject Hy Type I error correct decision

decision ‘Accept’ Hy | correct decision | Type II error
(Orloff & Bloom, 2014)




Multi-test Correction

FWER: Family-wise error rate (Bonferroni Corrects)
The probability of making >=1 type 1 error.
FWER = Pr(typels>0) = I - Pr(typels=0)=1-(1-a)"

1-(1-(.05/10))*° =.0488

True state of nature
Hy Hx
Our Reject Hy Type I error correct decision

decision ‘Accept’ Hy | correct decision | Type II error
(Orloff & Bloom, 2014)




Multi-test Correction

FWER: Family-wise error rate (Bonferroni corrects)
The probability of making >=1 type 1 error.
FWER = Pr(typels>0) = I - Pr(typels=0)=1-(1-a)"

FDR: False discovery rate (Benjamini-Hochberg corrects)
typels / (typels + correctRejects)

True state of nature
Hy Hx
Our Reject Hy Type I error correct decision

decision ‘Accept’ Hy | correct decision | Type II error
(Orloff & Bloom, 2014)




Multi-test Correction

FWER: Family-wise error rate (Bonferroni corrects)
The probability of making >=1 type 1 error.
FWER = Pr(typels>0) = I - Pr(typels=0)=1-(1-a)"

FDR: False discovery rate (Benjamini-Hochberg corrects)
typels / (typels + correctRejects)

Proportion of false positives among *all* significant results.

(Orloff & Bloom, 2014)



The Hypothesis Test “Algorithm”

Input: H,, obs, a

obs ts = test stat(obs)

null _dist = distribution of expected test_stat under H,
p(x<=obs_ts | H,)) = cdf(null_dist, obs_ts)

if p(x<=obs_ts | H)) < a:

decision = “Reject H,!”
else:
decision = “Accept H,.”

Output: decision




The Multi-test "Algorithm™

Input: H;s, obs, a
decisions = []
a_adj = adjust(a)
for H, in H;s
obs ts = test stat(obs)
null_dist = distribution of expected test_stat under H,

p(x<=obs_ts | H)) = cdf(null_dist, obs_ts)
if p(x<=obs_ts | H,) < a_adj:
decisions.append(“Reject H !”)
else:
decisions.append(“Accept H .”)

Output: decisions




The Multi-test "Algorithm™

Input: H;s, obs, a
decisions = []
a_adj = adjust(a) #e.g. adjust(a) = a/len(H,s)
for H, in H;s
obs ts = test stat(obs)
null_dist = distribution of expected test_stat under H,

p(x<=obs_ts | H)) = cdf(null_dist, obs_ts)
if p(x<=obs_ts | H,) < a_adj:
decisions.append(“Reject H !”)
else:
decisions.append(“Accept H .”)

Output: decisions




Multi-test "Algorithm™ Alternative

Input: H;s, obs, a

decisions = []

for H, in Hs
obs ts = test stat(obs)
null dist = distribution of expected test_stat under H,
p(x<=obs_ts|H,) = cdf(null_dist, obs_ts)

p_adj = inverse_adjust(p(x<=obs_ts|He))#e.g. p*len(H,s)
if p_adj < a:

decisions.append(“Reject H !”)
else:

decisions.append(“Accept H, .”)

Output: decisions




Multiple Linear Regression

Simple Linear Regression Y. = .}0 un f_))l Y. + €
7 - el i 1

o

where E(:E;!){;) = 0 and V(E,‘l)&'; ) = a-

l
expected variance

Estimated intercept and slope
r(x) =0+ bz v, = #(X,)
Residual: ¢ =Y, — Y,




Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:
}/z — 30 31 )(ﬂ 32 )(-ig . .,i'f'))m X m1 €;

[f we include and X = 1 for all i (i.e. adding the intercept to X), then we can
say. m

Yi=> 8 Xij+e

7=0




Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:
Yi = 0o+ 51Xt + 5o Xio + oo + B X1 + €

If we include and X _ = 1 for all i, then we can say:

m

. . /Or In vector notation across all i: \
Yi=) BiXi+e Y =XB+e

7=0 where "3 and € are vectors and
X 1s a matrix.

\_ /




Multiple Linear Regression

Suppose we have multiple X that we’d like to fit to Y at once:
Yi = 0o+ 51Xt + 5o Xio + oo + B X1 + €

If we include and X _ = 1 for all i, then we can say:

m

. . /Or In vector notation across all i: \
Yi=) BiXi+e Y =XB+e

7=0 where "3 and € are vectors and
X 1s a matrix.

Estimating ‘,3 ;

B=(XTxX)1xTy
N L

/!




Multiple Linear Regression

Suppose we have multiple independent variables that we’d like to fit to our

dependent variable: Y; = 8, + 3, Xi; + 5oXia + .. + BnXom1 + €

[f we include and X . = 1 for all i. Then we can say:

m

Y = Z; B, Xii + € 6 in vector notation \

=0 acrossalli: 'Y = X3 +¢
To test for significance of Where 3 and € are vectors and
individual coefficient, ;: X is a matrix.
b 3] - 3_) Estimating (3 :
SEG) s A=Y
Z-?:ﬂXij - Xj)?



Significance Testing

yfl — 30 + J)l )(‘il + 324 r‘z' 2t ...+ J)m Jer_l T €

, RSS

S = —0

x ¥

To test for significance of
individual coeffigient, j:

- SE(B))

T-Test for significance of hypothesis:
1) Calculate t
2) Calculate degrees of freedom:

df=N - (m+1)

3) Check probability in a t distribution:



0.40
0.35
0.30}
0.25}
=0.20}
0.15}
0.10
0.05}
0.00

T-Test for significance of hypothesis:
1) Calculate ¢t
t 2) Calculate degrees of freedom:

To test for significance of
individual coefficient, j:

P

5, 3) Check probability in a t distribution:

CSE() (df=v)
V2o (X — XG)?

df=N - (m+1)

—
R

t




Summary: Hypothesis Testing

Hypothesis Testing:

A framework for deciding which differences/relationships matter.

e Random Variables
e Distributions
e Hypothesis Testing Framework

Comparing Variables:
Metrics to quantify the difference or relationship between variables.

Simple Linear Regression, Correlation, Multiple Linear Regression,
Comparing Variables and Hypothesis Testing

Regularized Linear Regression (for supervised ML)

Multiple Hypothesis Testing



Statistical Standards

1. Correct for multiple tests
(Bonferonni’'s Principle)

2. Average multiple models
(ensemble techniques)

3. Smooth data

4. “Plot” data (or figure out a way to
look at a lot of it “raw”)

5. Interact with data

(http://simplystatistics.org/2014/05/22/10-things-statistics-taught-us-about-big-data-analysis/)



Statistical Standards

5.

Correct for multiple tests 6.
(Bonferonni’'s Principle)

7.
Average multiple models
(ensemble techniques) 8.
Smooth data

9.
“Plot” data (or figure out a way to
look at a lot of it “raw”) 10.

Interact with data

Know your “real” sample size
Correlation is not causation

Define metrics for success
(set a baseline)

Share code and data

The problem should drive solution

(http://simplystatistics.org/2014/05/22/10-things-statistics-taught-us-about-big-data-analysis/)



Large-Scale Hypothesis Testing

e Findings and Uncertainty
e Hypothesis Testing

e Bonferroni's Cats
e Multi-test Corrections
o Family-wise Error Rate
o False-Discovery Rate
e Correlation Metrics
o Effect Size (coefficient)
o Significance (whether p-value is below significance level)



